现代机器学习系统在大型数据集中培训时取得了巨大的成功。但是,这些数据集通常包含敏感信息(例如医疗记录,面部图像),导致严重的隐私问题。差异化私有生成模型(DPGM)通过生成私有化的敏感数据来避免此类隐私问题的解决方案。与其他差异私人(DP)学习者类似,DPGM的主要挑战也是如何在效用和隐私之间取得微妙的平衡。我们提出了DP $^2 $ -VAE,这是一种具有可证明的DP保证的变性自动编码器(VAE)的新型培训机制,并通过\ emph {pre-emph {pre-emph {prec-emph {pret-emph {pret-training}。在相同的DP约束下,DP $^2 $ -VAE最大程度地减少了训练过程中的扰动噪声,从而改善了实用性。 DP $^2 $ -VAE非常灵活,并且对许多其他VAE变体都很容易适应。从理论上讲,我们研究了预训练对私人数据的影响。从经验上讲,我们在图像数据集上进行了广泛的实验,以说明我们在各种隐私预算和评估指标下对基准的优越性。
translated by 谷歌翻译
联合学习(FL)是一个杰出的框架,可以通过融合本地,分散的模型来确保用户隐私来培训集中式模型。在这种情况下,一个主要障碍是数据异质性,即每个客户具有非相同和独立分布(非IID)数据。这类似于域概括(DG)的上下文,在该上下文中,每个客户端都可以视为不同的域。但是,尽管DG中的许多方法从算法的角度来解决数据异质性,但最近的证据表明,数据增强可以诱导相等或更高的性能。在这种连接的激励下,我们介绍了受欢迎的DG算法的联合版本,并表明,通过应用适当的数据增强,我们可以在联合环境中减轻数据异质性,并为看不见的客户获得更高的准确性。配备了数据增强功能,我们甚至可以使用最基本的联邦平均算法实现最先进的性能,并具有更稀疏的沟通。
translated by 谷歌翻译
做出强大的预测是一个重要的挑战。联邦学习(FL)中的一个单独挑战是减少交流回合的数量,尤其是因为这样做会降低异质数据设置的性能。为了解决这两个问题,我们对学习全球模型的问题有贝叶斯的看法。我们展示了如何使用客户预测性后代近似全局预测后验。这与其他作品不同,该作品将局部模型空间后代汇总到全局模型空间后部,并且由于后部的高维多模式性质而易受高近似误差的影响。相比之下,我们的方法对预测后期进行了聚集,由于输出空间的低维度,通常更容易近似。我们基于此想法提出了一种算法,该算法在每个客户端对MCMC采样进行了进行估计,然后在一轮中汇总它们以获得全局合奏模型。通过对多个分类和回归任务的经验评估,我们表明,尽管使用了一轮通信,但该方法与其他FL技术具有竞争力,并且在异质环境上的表现优于它们。该代码可在https://github.com/hasanmohsin/fedpredspace_1 round上公开获得。
translated by 谷歌翻译
在适用联合学习框架(FL)框架的典型情况下,客户常见的是没有足够的培训数据来产生准确的模型。因此,不仅提供点估计的模型,而且提供一些信心概念是有益的。高斯工艺(GP)是一种强大的贝叶斯模型,随着自然校准的差异估计。但是,学习独立的全球GP是一项挑战,因为合并本地内核会导致隐私泄漏。为了保护隐私,以前考虑联合GPS的先前作品避免通过专注于个性化设置或学习本地模型的合奏来避免学习全球模型。我们提出了联邦贝叶斯神经回归(FEDBNR),这是一种算法,该算法学习了可扩展的独立全球联合GP,尊重客户的隐私。我们通过定义统一的随机内核来结合深内核学习和随机特征,以进行可伸缩。我们显示这种随机的内核可以恢复任何固定的内核和许多非平稳核。然后,我们得出了一种学习全局预测模型的原则方法,就像所有客户数据都集中一样。我们还学习针对非相同和独立分布(非I.I.D。)客户的知识蒸馏方法的全球核。与其他联合GP模型相比,在现实世界回归数据集上进行了实验,并显示出统计学上显着的改进。
translated by 谷歌翻译
VirtualCube系统是一个尝试克服传统技术的一些限制的3D视频会议系统。关键的成分是VirtualCube,一种用RGBD摄像机录制的现实世界隔间的抽象表示,用于捕获用户的3D几何和纹理。我们设计VirtualCube,以便数据捕获的任务是标准化和显着简化的,并且所有内容都可以使用现成的硬件构建。我们将VirtualCubes用作虚拟会议环境的基本构建块,我们为每个VirtualCube用户提供一个周围的显示,显示远程参与者的寿命型视频。为了实现远程参与者的实时渲染,我们开发了V-Cube视图算法,它使用多视图立体声进行更精确的深度估计和Lumi-Net渲染,以便更好地渲染质量。 VirtualCube系统正确保留了参与者之间的相互眼睛凝视,使他们能够建立目光接触并意识到谁在视觉上关注它们。该系统还允许参与者与远程参与者具有侧面讨论,就像他们在同一个房间一样。最后,系统揭示了如何支持如何支持工作项的共享空间(例如,文档和应用程序),并跟踪参与者的视觉注意工作项目。
translated by 谷歌翻译
医疗对话系统(MDSS)旨在协助医生和患者一系列专业医疗服务,即诊断,咨询和治疗。但是,一站式MDS仍然是未开发的,因为:(1)没有数据集如此大规模对话包含多种医疗服务和细粒度的医疗标签(即,意图,插槽,值); (2)没有模型已经根据统一框架中的多服务对话解决了MDS。在这项工作中,我们首先建立一个多域多次服务医学对话(M ^ 2-Meddialog)数据集,其中包含医生和患者的1,557种对话,涵盖276种疾病,2,468种医学实体和3种医疗服务专业。据我们所知,它是唯一包括多种医疗服务和细粒度医疗标签的医疗对话数据集。然后,我们将一站式MDS制定为序列到序列生成问题。我们分别统一MDS,具有因果语言建模和条件因果语言建模。具体而言,我们采用了几种预磨料模型(即,Bert-WWM,BERT-MED,GPT2和MT5)及其变体,以在M ^ 2-MedDialog数据集上获取基准。我们还提出了伪标签和自然扰动方法来扩展M2-MedDialog数据集,并增强最先进的预磨损模型。我们展示了到目前为止通过对M2-MEDDIALOG的大量实验来实现的结果。我们释放DataSet,代码以及评估脚本,以促进在这方面的未来研究。
translated by 谷歌翻译
Multi-player multi-armed bandit is an increasingly relevant decision-making problem, motivated by applications to cognitive radio systems. Most research for this problem focuses exclusively on the settings that players have \textit{full access} to all arms and receive no reward when pulling the same arm. Hence all players solve the same bandit problem with the goal of maximizing their cumulative reward. However, these settings neglect several important factors in many real-world applications, where players have \textit{limited access} to \textit{a dynamic local subset of arms} (i.e., an arm could sometimes be ``walking'' and not accessible to the player). To this end, this paper proposes a \textit{multi-player multi-armed walking bandits} model, aiming to address aforementioned modeling issues. The goal now is to maximize the reward, however, players can only pull arms from the local subset and only collect a full reward if no other players pull the same arm. We adopt Upper Confidence Bound (UCB) to deal with the exploration-exploitation tradeoff and employ distributed optimization techniques to properly handle collisions. By carefully integrating these two techniques, we propose a decentralized algorithm with near-optimal guarantee on the regret, and can be easily implemented to obtain competitive empirical performance.
translated by 谷歌翻译
In recent years, the field of intelligent transportation systems (ITS) has achieved remarkable success, which is mainly due to the large amount of available annotation data. However, obtaining these annotated data has to afford expensive costs in reality. Therefore, a more realistic strategy is to leverage semi-supervised learning (SSL) with a small amount of labeled data and a large amount of unlabeled data. Typically, semantic consistency regularization and the two-stage learning methods of decoupling feature extraction and classification have been proven effective. Nevertheless, representation learning only limited to semantic consistency regularization may not guarantee the separation or discriminability of representations of samples with different semantics; due to the inherent limitations of the two-stage learning methods, the extracted features may not match the specific downstream tasks. In order to deal with the above drawbacks, this paper proposes an end-to-end deep semi-supervised learning double contrast of semantic and feature, which extracts effective tasks specific discriminative features by contrasting the semantics/features of positive and negative augmented samples pairs. Moreover, we leverage information theory to explain the rationality of double contrast of semantics and features and slack mutual information to contrastive loss in a simpler way. Finally, the effectiveness of our method is verified in benchmark datasets.
translated by 谷歌翻译
Recent work reported the label alignment property in a supervised learning setting: the vector of all labels in the dataset is mostly in the span of the top few singular vectors of the data matrix. Inspired by this observation, we derive a regularization method for unsupervised domain adaptation. Instead of regularizing representation learning as done by popular domain adaptation methods, we regularize the classifier so that the target domain predictions can to some extent ``align" with the top singular vectors of the unsupervised data matrix from the target domain. In a linear regression setting, we theoretically justify the label alignment property and characterize the optimality of the solution of our regularization by bounding its distance to the optimal solution. We conduct experiments to show that our method can work well on the label shift problems, where classic domain adaptation methods are known to fail. We also report mild improvement over domain adaptation baselines on a set of commonly seen MNIST-USPS domain adaptation tasks and on cross-lingual sentiment analysis tasks.
translated by 谷歌翻译
基于图形的模型最近在人的重新识别任务中取得了巨大的成功,该任务首先计算了不同人之间的图形拓扑结构(亲和力),然后将信息传递给他们的信息以实现更强的功能。但是,我们在可见的红外人员重新识别任务(VI-REID)中发现了现有的基于图的方法,因为有两个问题:1)火车测试模式平衡差距,这是VI-REID任务的属性。两个模式数据的数量在训练阶段平衡,但推理极为不平衡,导致基于图的VI-REID方法的概括较低。 2)由图形模块的端到端学习方式引起的亚最佳拓扑结构。我们分析训练有素的输入特征会削弱图形拓扑的学习,从而使其在推理过程中不够概括。在本文中,我们提出了一种反事实干预特征转移(CIFT)方法来解决这些问题。具体而言,均匀和异质的特征转移(H2FT)旨在通过两种独立的设计的图形模块和不平衡的场景模拟来减少火车测试模态差距。此外,提出了反事实关系干预(CRI)来利用反事实干预和因果效应工具来突出拓扑结构在整个训练过程中的作用,这使图形拓扑结构更加可靠。对标准VI-REID基准测试的广泛实验表明,CIFT在各种设置下都优于最新方法。
translated by 谷歌翻译